Dept Banner
Dept Banner
hybrid perovskite single crystals
rubrene OFETs

Population switching and charge sensing in quantum dots: A case for quantum phase transitions

Categories: Physics - Condensed Matter (PHYS-CM)
Speaker: Moshe Goldstein, (Bar-Ilan)
Date & Time: October 26, 2009 - 1:30pm
Location: Serin Physics 385

``Population switching'' is a phenomenon involving a steep filling of a narrow level in a quantum dot at the expense of a wide one as a common gate voltage is varied. This effect has been discussed in several contexts, including charge sensing by means of a current-carrying quantum point contact (QPC), as well as in relation with lapses of the transmission phase of a quantum dot. Is the switching involved abrupt, in which case one is facing a first order quantum phase transition? Mapping this problem onto a two-species Coulomb gas representation, we demonstrate that it is equivalent to an orbital Kondo model, and find that the switching is steep but not abrupt; however, when one tries to measure this behavior by electrostatically coupling one of the levels to a charge detecting QPC, one may render the switching abrupt. We show that this quantum phase transition is triggered by a change in physics from a Mahan exciton controlled dynamics to an Anderson orthogonality catastrophe controlled dynamics.  Including the spin degree of freedom may lead to a realization of the SU(4) Kondo effect, as well as to quantum criticality of the two-impurity-Kondo type.

Contact Us

NR03HamiltonGate 607 Taylor Road
Piscataway, NJ 08854

P   848-445-1388
Email Us